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Connectivity is one of the main topological properties that we utilize when
working with a space. A particularly useful property of a connected space is
that we can often extend “local” results to “global” results. In this note, we
state and prove one of these “extension” results and use it in a concrete setting.

The question we consider is whether a function on a space is constant. This
is a “global” assertion about a function, and we have a corresponding “local”
assertion that we want to extend.

Definition 1. Let X be a space and S be a set. We say that f : X → S is
locally constant if for each x ∈ X there is an open neighborhood U of x such
that f is constant on U .

In particular, every constant function is locally constant. When the domain is
connected, the converse holds as well.

Theorem 2. Let X be a connected space and S be a set. Then, if f : X → S
is locally constant, it is constant.

Proof. If X is empty, then the assertion that f is constant is vacuously true,
and we are done.

Otherwise, assume that X is nonempty. Then, there is an x0 ∈ X. Define

A = {x ∈ X : f(x) = f(x0)}.

We first claim that A is open. Indeed, for each a ∈ A, since f is locally constant,
there is an open neighborhood U of a such that f is constant on U . Hence, for
each x ∈ U , f(x) = f(a) = f(x0), and so x ∈ A. Therefore U ⊆ A, and so a is
an interior point of A. As a was arbitrary, A is open.

We now claim that A is closed. For each b ∈ X \A, since f is locally constant,
there is an open neighborhood V of b such that f is constant on V . Thus, for
each x ∈ V , f(x) = f(b) ̸= f(x0), so x ∈ X \A. Hence, V ⊆ X \A, and so b is
an interior point of X \A. Since b was arbitrary, X \A is open and therefore A
is closed.

We thus have that A is clopen, and since x0 ∈ A we also have that A is nonempty.
By connectedness of X, the only nonempty clopen subset of X is X itself, so
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A = X. Thus, for all x, y ∈ X, x, y ∈ A, and so f(x) = f(x0) = f(y). We
conclude that f is constant.

We now take a look at a concrete example of this result. In calculus, we usually
assert (inaccurately) that if a function’s derivative is always zero, then it is
constant. A more precise (and correct) statement is as follows.

Theorem 3. Let U ⊆ R be open and f : U → R be differentiable. Suppose that
U is connected and that f ′(x) = 0 for all x ∈ U . Then f is constant.

Proof. Note that since f is differentiable, it is also continuous.

We wish to show that f is locally constant. Let x0 ∈ U . Since U is open, we
can find a δ > 0 such that (x0 − δ, x0 + δ) ⊆ U . Let x ∈ (x0 − δ, x0 + δ). There
are three cases.

First, if x = x0, then f(x) = f(x0).

Second, if x < x0, then [x, x0] ⊆ U . Since f is continuous on [x, x0] and
differentiable on (x, x0), by the mean value theorem there exists a c ∈ (x, x0)
such that

f(x0)− f(x) = f ′(c)(x0 − x) = 0 · (x0 − x) = 0

since f ′(y) = 0 for all y ∈ U . Hence, f(x) = f(x0).

Third, if x0 < x, then [x0, x] ⊆ U , and a similar argument to the case when
x < x0 shows that f(x) = f(x0).

In all three cases, f(x) = f(x0), so for any x, y ∈ (x0−δ, x0+δ), f(x) = f(x0) =
f(y). Therefore f is constant on (x0−δ, x0+δ), which is an open neighborhood
of x0.

We conclude that f is locally constant. Since U is connected, by Theorem 2 we
have that f is constant.

A similar result holds in higher dimensions.

Theorem 4. Let n be a positive integer, U ⊆ Rn be open and connected, and
f : U → R. Suppose that f is differentiable and that ∇f(x) = 0 for all x ∈ U .
Then f is constant.

The proof is similar to the n = 1 case: we show that f is locally constant using
a generalization of the mean value theorem, and then invoke Theorem 2.

This last result is interesting in that it allows us to detect a topological property
using differential methods: if we can find a differentiable nonconstant function
on U whose derivative is always zero, then U must be disconnected.

More generally, we can investigate topological properties of differentiable man-
ifolds by studying differentiable functions on them. This leads us naturally to
the field of Morse theory.
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