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Suppose that F is a field and that V and W are vector spaces over F . Given
a basis B for V , we can construct a linear map T : V → W by specifying its
value on each element of the basis B. This specification uniquely determines T .
Formally, we have the following theorem:

Theorem 1. Let F be a field and V and W be vector spaces over F . Suppose
that B ⊆ V is a basis for V and that t : B → W is a function. There then exists
a unique linear map T : V → W such that T (v) = t(v) for all v ∈ B.

Now suppose that G is a group and that S is a generating set for G, i.e, ⟨S⟩ = G.
One might expect that a result analogous to Theorem 1 also holds, in that we
can construct a homomorphism out of G by specifying its value on each element
of S. Formally, we might expect that the following theorem holds:

(Potential) Theorem 2. Let G and H be groups and S ⊆ G be a generating
set for G. Suppose that ϕ : S → H is a function. There then exists a unique
homomorphism Φ : G → H such that Φ(s) = ϕ(s) for all s ∈ S.

Unfortunately, Theorem 2 is false. Set G = H = Z, so that S = {1, 2} is a
generating set for G. Define ϕ : S → H by ϕ(1) = ϕ(2) = 2. If there was a
homomorphism Φ : G → H that extends ϕ, then

0 = Φ(0) (1)

= Φ(2− 1− 1) (2)

= Φ(2)− Φ(1)− Φ(1) (3)

= ϕ(2)− ϕ(1)− ϕ(1) (4)

= 2− 2− 2 (5)

= −2, (6)

a contradiction.

How should we fix Theorem 2? The solution is suggested by the preceding
counterexample. The issue was that ϕ didn’t respect the relation 2− 1− 1 = 0,
in that ϕ(2) − ϕ(1) − ϕ(1) ̸= 0. Furthermore, any function ϕ would have to
respect this relation in order to extend to a homomorphism Φ. We then might
guess that a function ϕ extends to a homomorphism Φ if and only if it respects
all the relations between elements of S, i.e, if elements of S combine to form

1

https://orcid.org/0009-0002-9619-9386


the identity element eG, then their images under ϕ combine to form the identity
element eH . Indeed, we have the following (correct) version of Theorem 2:

Theorem 3. Let G and H be groups and S ⊆ G be a generating set for G.
Suppose that ϕ : S → H is a function. The following are equivalent:

1. There exists a homomorphism Φ : G → H such that Φ(s) = ϕ(s) for all
s ∈ S;

2. For every positive integer n, s1, . . . , sn ∈ S, and ε1, . . . , εn ∈ {1,−1}, if
sε11 · · · sεnn = eG, then ϕ(s1)

ε1 · · ·ϕ(sn)εn = eH .

Furthermore, if there does exist a homomorphism G → H extending ϕ, it is
unique.

Proof. (1) ⇒ (2): Let n be a positive integer, s1, . . . , sn ∈ S, and ε1, . . . , εn ∈
{1,−1}. Assume that sε11 · · · sεnn = eG. Since Φ extends ϕ and is a homomor-
phism, we have that

ϕ(s1)
ε1 · · ·ϕ(sn)εn = Φ(s1)

ε1 · · ·Φ(sn)εn = Φ(sε11 · · · sεnn ) = Φ(eG) = eH . (7)

(1) ⇐ (2): Define a function Φ : G → H as follows. First, define Φ(eG) = eH .
Next, if g ∈ G and g ̸= eG, then since S generates G there exists a positive
integer n, s1, . . . , sn ∈ S, and ε1, . . . , εn ∈ {1,−1} such that g = sε11 · · · sεnn .
Define

Φ(g) = ϕ(s1)
ε1 · · ·ϕ(sn)εn . (8)

We now verify that Φ is well-defined. Suppose that g ∈ G and that g ̸= eG.
Suppose also that n and m are positive integers, a1, . . . , an, b1, . . . , bm ∈ S, and
ε1, . . . , εn, δ1, . . . , δm ∈ {1,−1} are such that

g = aε11 · · · aεnn = bδ11 · · · bδmm . (9)

Then
aε11 · · · aεnn b−δm

m · · · b−δ1
1 = eG, (10)

and so by assumption

ϕ(a1)
ε1 · · ·ϕ(an)εnϕ(bm)−δm · · ·ϕ(b1)−δ1 = eH . (11)

Therefore
ϕ(a1)

ε1 · · ·ϕ(an)εn = ϕ(b1)
δ1 · · ·ϕ(bm)δm (12)

and Φ is well-defined.

Next, we verify that Φ is a homomorphism. Let a, b ∈ G. If a = eG, then

Φ(ab) = Φ(eGb) = Φ(b) = eHΦ(b) = Φ(eG)Φ(b) = Φ(a)Φ(b), (13)

and if b = eG,

Φ(ab) = Φ(aeG) = Φ(a) = Φ(a)eH = Φ(a)Φ(eG) = Φ(a)Φ(b). (14)
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We can then assume that a ̸= eG and b ̸= eG. There then exist positive integers
n and m, a1, . . . , an, b1, . . . , bm ∈ S, and ε1, . . . , εn, δ1, . . . , δm ∈ {1,−1} such
that a = aε11 · · · aεnn and b = bδ11 · · · bδmm . By definition,

Φ(ab) = Φ(aε11 · · · aεnn bδ11 · · · bδmm ) (15)

= ϕ(a1)
ε1 · · ·ϕ(an)εnϕ(b1)δ1 · · ·ϕ(bm)δm (16)

= Φ(aε11 · · · aεnn )Φ(bδ11 · · · bδmm ) (17)

= Φ(a)Φ(b). (18)

Therefore Φ(ab) = Φ(a)Φ(b) in all cases, so Φ is a homomorphism.

We also need to verify that Φ extends ϕ. Let s ∈ S. If s = eG, then s1 = eG, so
by assumption ϕ(s)1 = eH . By the definition of Φ,

Φ(s) = Φ(eG) = eH = ϕ(s)1 = ϕ(s). (19)

If s ̸= eG, then since s = s1, by the definition of Φ,

Φ(s) = ϕ(s)1 = ϕ(s). (20)

Therefore Φ(s) = ϕ(s) in both cases.

This proves the equivalence (1) ⇐⇒ (2).

Finally, we prove uniqueness. Suppose that Φ,Ψ : G → H are homomorphisms
such that Φ(s) = ϕ(s) = Ψ(s) for all s ∈ S. Then, if

K = {g ∈ G : Φ(g) = Ψ(g)}, (21)

we have that S ⊆ K. We claim that K ≤ G. First, since Φ and Ψ are
homomorphisms, Φ(eG) = eH = Ψ(eG) and eG ∈ K. Next, if a, b ∈ K, then

Φ(ab) = Φ(a)Φ(b) = Ψ(a)Ψ(b) = Ψ(ab) (22)

and ab ∈ K. Finally, if a ∈ K, then

Φ(a−1) = Φ(a)−1 = Ψ(a)−1 = Ψ(a−1) (23)

and a−1 ∈ K. Therefore K ≤ G, and since S ⊆ K, G = ⟨S⟩ ⊆ K. Thus K = G
and Φ = Ψ.

Verifying the second condition of Theorem 3 can often be made easier by choos-
ing more “optimal” generating sets. This is particularly the case for cyclic
groups. Indeed, the following two results can be proven using Theorem 3 and
are in fact special cases of it:

Theorem 4. Let G be a group and g0 ∈ G. There then exists a unique homo-
morphism Φ : Z → G such that Φ(1) = g0.
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Theorem 5. Let G be a group and g0 ∈ G. Suppose that n is an integer with
n ≥ 2. The following are equivalent:

1. There exists a homomorphism Φ : Z/nZ → G such that Φ(1̄) = g0;

2. gn0 = eG.

What explains the discrepancy between Theorem 1 and Theorem 3? The cul-
prit is that a basis for a vector space has to satisfy two conditions: spanning
and linear independence. For groups, a generating set satisfies an analogous
spanning condition, but has no analogous linear independence requirement. We
would get a result for vector spaces analogous to Theorem 3 if we only assumed
that we had a spanning set.

Similar results can be proven for generating sets of modules and rings. This
suggests that there might be a generalization of all these results to the setting
of category theory, likely using the concept of a generator of a category.
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