Homomorphisms and Generating Sets

Holden Swindell

Suppose that F' is a field and that V and W are vector spaces over F. Given
a basis B for V', we can construct a linear map T : V — W by specifying its
value on each element of the basis B. This specification uniquely determines 7.
Formally, we have the following theorem:

Theorem 1. Let F be a field and V and W be vector spaces over F. Suppose
that B CV is a basis for V and thatt : B — W is a function. There then exists
a unique linear map T : V. — W such that T'(v) = t(v) for all v € B.

Now suppose that G is a group and that S is a generating set for G, i.e, (S) = G.
One might expect that a result analogous to Theorem 1 also holds, in that we
can construct a homomorphism out of G by specifying its value on each element
of S. Formally, we might expect that the following theorem holds:

(Potential) Theorem 2. Let G and H be groups and S C G be a generating
set for G. Suppose that ¢ : S — H is a function. There then exists a unique
homomorphism ® : G — H such that ®(s) = ¢(s) for all s € S.

Unfortunately, Theorem 2 is false. Set G = H = Z, so that S = {1,2} is a
generating set for G. Define ¢ : S — H by ¢(1) = ¢(2) = 2. If there was a
homomorphism & : G — H that extends ¢, then
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a contradiction.

How should we fix Theorem 2?7 The solution is suggested by the preceding
counterexample. The issue was that ¢ didn’t respect the relation 2 —-1—1 =0,
in that ¢(2) — ¢(1) — ¢(1) # 0. Furthermore, any function ¢ would have to
respect this relation in order to extend to a homomorphism ®. We then might
guess that a function ¢ extends to a homomorphism @ if and only if it respects
all the relations between elements of S, i.e, if elements of S combine to form
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the identity element eq, then their images under ¢ combine to form the identity
element ey. Indeed, we have the following (correct) version of Theorem 2:

Theorem 3. Let G and H be groups and S C G be a generating set for G.
Suppose that ¢ : S — H is a function. The following are equivalent:

1. There exists a homomorphism ® : G — H such that ®(s) = ¢(s) for all
s€S;

2. For every positive integer n, s1,...,8, € S, and €1,...,e, € {1,=1}, if
s3teesin = eq, then ¢(s1)t - @(sn)"" = eq.

Furthermore, if there does exist a homomorphism G — H extending ¢, it is
unique.

Proof. (1) = (2): Let n be a positive integer, s1,...,8, € S, and €1,...,6, €
{1,—1}. Assume that s ---sé» = eg. Since ¢ extends ¢ and is a homomor-
phism, we have that

Bls1)" -+ Blsn) = B(s1)7 - B(5,)7 = D55+ 550) = Bleg) = em. (7

(1) < (2): Define a function ® : G — H as follows. First, define ®(eq) = ep.
Next, if ¢ € G and g # eq, then since S generates G there exists a positive
integer n, s1,...,8, € S, and €1,...,e, € {1,—1} such that g = s7*---s5n.
Define

P(g) = d(s1)°" - Psn)™" (8)

We now verify that ® is well-defined. Suppose that ¢ € G and that g # eq.
Suppose also that n and m are positive integers, ay,...,an,b1,...,by € .5, and
€1yeveyEny01,...,0m € {1,—1} are such that

g=a§ - agr = b b (9)
Then
aft---agrby bt = e, (10)
and so by assumption
$(a1) -+~ Pan) " $(bm) O™ -+ p(b1) " = e (11)
Therefore
Glar)™ - plan)™ = G(b1)" -+ $(by )™ (12)

and ® is well-defined.
Next, we verify that ® is a homomorphism. Let a,b € G. If a = eg, then

P(ab) = P(egb) = D(b) = ex ®(b) = B(eq)P(b) = P(a)D(b), (13)
and if b = eg,

®(ab) = P(aeq) = P(a) = P(a)ey = P(a)P(eq) = P(a)P(b). (14)



We can then assume that a # e and b # eg. There then exist positive integers
n and m, ay,...,an,01,...,by € S, and €1,...,6,,01,...,0,m € {1,—1} such
that a = a$ ---aSr and b= b* - - b%=. By definition,

n

®(ab) = ®(af* -+ Enb51~-~bf,;n> (15)
= ¢(a1) - dlan) T (b1)" -+ - P (b)) (16)
= ®(agt - asn)B(BY - iy (17)
= 0(a)®(b). (18)

Therefore ®(ab) = ®(a)®(b) in all cases, so P is a homomorphism.

We also need to verify that ® extends ¢. Let s € S. If s = e, then s' = eg, so
by assumption ¢(s)! = eg. By the definition of ®,

D(s) = ®(eq) = en = P(s)' = d(s). (19)
If s # e, then since s = s', by the definition of ®,
D(s) = o(s)" = ¢(s). (20)

Therefore ®(s) = ¢(s) in both cases.
This proves the equivalence (1) <= (2).

Finally, we prove uniqueness. Suppose that ®, ¥ : G — H are homomorphisms
such that ®(s) = ¢(s) = U(s) for all s € S. Then, if

K={geG:®(g)=Y¥(g)}, (21)

we have that S C K. We claim that K < G. First, since ® and ¥ are
homomorphisms, ®(eq) = ey = ¥(eg) and e € K. Next, if a,b € K, then
D(ab) = ®(a)®(b) = ¥(a)V(b) = U(ab) (22)
and ab € K. Finally, if a € K, then
(a!) =®(a) ' =U(a) ' = V() (23)
and a~! € K. Therefore K < G, and since S C K, G = (S) C K. Thus K = G
and ¢ = U. O

Verifying the second condition of Theorem 3 can often be made easier by choos-
ing more “optimal” generating sets. This is particularly the case for cyclic
groups. Indeed, the following two results can be proven using Theorem 3 and
are in fact special cases of it:

Theorem 4. Let G be a group and go € G. There then exists a unique homo-
morphism ® : Z — G such that ®(1) = go.



Theorem 5. Let G be a group and gy € G. Suppose that n is an integer with
n > 2. The following are equivalent:

1. There exists a homomorphism ® : Z/nZ — G such that ®(1) = go;
2. g4 = eq.

What explains the discrepancy between Theorem 1 and Theorem 3?7 The cul-
prit is that a basis for a vector space has to satisfy two conditions: spanning
and linear independence. For groups, a generating set satisfies an analogous
spanning condition, but has no analogous linear independence requirement. We
would get a result for vector spaces analogous to Theorem 3 if we only assumed
that we had a spanning set.

Similar results can be proven for generating sets of modules and rings. This
suggests that there might be a generalization of all these results to the setting
of category theory, likely using the concept of a generator of a category.
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