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Abstract

Given a polynomial on the complex unit circle, we can approximate
its uniform norm by sampling at a finite number of points. We discuss
here some of the known results and open problems around estimating the
relative error in this approximation. We also generalize some of these
known results and prove a special case of one of the open problems.
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1 Introduction

Suppose that we have some periodic signal that we wish to process in some
way. An important feature of the signal that is relevant for several real-world
applications is the peak amplitude, i.e, the maximum absolute value of the signal.
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It might be infeasible or unnecessary to determine the exact peak amplitude of a
signal, and so instead one can approximate it. One way to approximate the peak
amplitude is to sample the signal at several points and take the maximum of the
absolute values of the signal at these points. Two natural questions arise: how
well does this approximate the peak amplitude, and which choices of sampling
points are best?

To begin to answer these questions, we first translate the problem into more
mathematical language. We can represent a signal as a periodic real-valued
function f of a real variable, say with period T > 0. The peak amplitude of f is
then

sup
x∈R

|f(x)| = sup
x∈[0,T ]

|f(x)|, (1)

using the periodicity of f .

One important class of periodic functions are the real trigonometric polynomials
(of period T ), which are of the form

s(x) =

N∑
n=0

an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)
, x ∈ R, (2)

where the an and bn are real coefficients. If we assume that the signal f is
continuous, then it turns out that f can be approximated arbitrarily well by a
real trigonometric polynomial. We therefore focus on trying to approximate the
peak amplitude of a real trigonometric polynomial.

Using Euler’s formula, we can also write the real trigonometric polynomial s in
the form

s(x) =

N∑
n=−N

cne
2πnix/T =

N∑
n=−N

cn

(
e2πix/T

)n
, x ∈ R, (3)

where the cn are complex coefficients. By periodicity, we only need to consider
x ∈ [0, T ] in order to find the peak amplitude, and as x goes from 0 to T , e2πix/T

traces out the unit circle. Hence, to find the peak amplitude of s, it suffices to
find the maximum absolute value of the Laurent polynomial

L(z) =

N∑
n=−N

cnz
n, |z| = 1, (4)

where z is a complex variable. Now, as |zN | = 1 when |z| = 1, we have that

|L(z)| = |zNL(z)| =

∣∣∣∣∣
N∑

n=−N

cnz
N+n

∣∣∣∣∣ =
∣∣∣∣∣
2N∑
n=0

cn−Nzn

∣∣∣∣∣ . (5)

We therefore need to approximate the maximum absolute value of the complex
polynomial

p(z) =

2N∑
n=0

cn−Nzn, |z| = 1. (6)
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In particular, we wish to investigate how sampling the values of p at finitely
many points allows us to approximate the maximum absolute value of p. This is
the task which we discuss in this paper.

Paper Outline: First, in Section 2, we formalize the problem statement and
state some classical results that we will use later. In Section 3, we discuss some
of the existing results for a particular case of the problem. We then prove some
generalizations of these results in Section 4 and apply these generalizations to
some open problems in Section 5.
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2 Background

2.1 Formalizing the Problem

Fix nonnegative integers N and n, and assume that N > n. We denote the
complex vector space of all polynomials of degree at most n with complex
coefficients by Pn. This vector space is finite-dimensional, with dimension n+ 1.

We denote the complex unit circle by

T = {z ∈ C : |z| = 1} (7)

and the Nth roots of unity by

TN =
{
z ∈ C : zN = 1

}
=
{
e2πij/N : j = 0, . . . , N − 1

}
. (8)

Note that TN ⊆ T and that #TN = N .

We can now define two norms on Pn. First, we have the uniform norm ∥·∥ defined
by

∥p∥ = sup
z∈T

|p(z)|, p ∈ Pn, (9)

which is always finite since polynomials are continuous functions and T is compact.
We also have the sampling norm ∥·∥N defined by

∥p∥N = sup
z∈TN

|p(z)| = max
0≤j≤N−1

∣∣∣p(e2πij/N)∣∣∣ , p ∈ Pn. (10)

This defines a norm on Pn since a polynomial of degree at most n that has
N > n roots is necessarily the zero polynomial.
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More generally, if F ⊆ T is any subset such that #F = N , we can define the
sampling norm ∥·∥F given by

∥p∥F = sup
z∈F

|p(z)|, p ∈ Pn. (11)

With this notation, ∥·∥N = ∥·∥TN
.

Now, fix a subset F ⊆ T such that #F = N . We wish to see how good of an
approximation ∥·∥F is to ∥·∥. In particular, we want to investigate the relative
error ∣∣∣∣∥p∥ − ∥p∥F

∥p∥

∣∣∣∣ = ∣∣∣∣1− ∥p∥F
∥p∥

∣∣∣∣ , p ∈ P∗
n, (12)

where P∗
n ⊆ Pn is the set of all nonzero polynomials in Pn. Since ∥p∥F ≤ ∥p∥

already holds for all p ∈ Pn, the relative error simply becomes

1− ∥p∥F
∥p∥

, p ∈ P∗
n. (13)

Therefore one way to quantify how well ∥·∥F approximates ∥·∥ is to investigate
the quantity

sup
p∈P∗

n

(
1− ∥p∥F

∥p∥

)
= 1−

(
sup
p∈P∗

n

∥p∥
∥p∥F

)−1

. (14)

We therefore define

K(F, n) = sup
p∈P∗

n

∥p∥
∥p∥F

. (15)

As K(F, n) gets closer to 1, the approximation of ∥·∥ via discrete sampling on F
gets better. Estimating this quantity for various choices of F , N , and n is the
problem we will focus on in this paper.

As remarked earlier, ∥p∥F ≤ ∥p∥ for all p ∈ Pn, and so 1 ≤ ∥p∥/∥p∥F for all
p ∈ P∗

n. Therefore 1 ≤ K(F, n), and in particular K(F, n) is always positive.

In addition, we can show that K(F, n) is always finite. Since ∥·∥ and ∥·∥F are
both norms on the finite-dimensional vector space Pn, they must be equivalent
norms, and so there exist positive constants c and C such that

c∥p∥F ≤ ∥p∥ ≤ C∥p∥F , p ∈ Pn. (16)

Therefore

c ≤ ∥p∥
∥p∥F

≤ C, p ∈ P∗
n, (17)

and so c ≤ K(F, n) ≤ C. In particular, K(F, n) < ∞, and we can reinterpret
K(F, n) as the optimal value of the constant C.
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2.2 Auxiliary Results

We will need a number of classical results for the proofs in Section 4, so for
convenience we will state them here. We use the notation of Section 2.1.

The first result is a special case of a theorem of Bernstein [1].

Theorem 2.1. Let n be a nonnegative integer and p ∈ Pn. Then ∥p′∥ ≤ n∥p∥.

The next two results are standard theorems from complex analysis. They
can be found in the reference [11] as Proposition 3.1 (iii) and Proposition 3.2,
respectively, in Chapter 1.

Theorem 2.2. Let γ be a smooth contour in the complex plane and f a contin-
uous function C → C. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ sup
γ

|f(z)| · ℓ(γ), (18)

where ℓ(γ) is the length of the contour γ and the supremum is taken over the
points on the contour.

Theorem 2.3. Let z0 and z1 be points in the complex plane and γ be a smooth
contour in the complex plane from z0 to z1. Suppose that F is a holomorphic
function C → C. Then, ∫

γ

F ′(z) dz = F (z1)− F (z0). (19)

3 Known Results

A number of estimates of K(F, n) are known in the special case when F = TN .
We leverage these estimates in Section 4.2 to prove estimates for more general F .

The first result, in the special case when N = n+ 1, is due to Marcinkiewicz [7].

Theorem 3.1 (Marcinkiewicz, 1937). Let n be an integer such that n ≥ 2. Then,
there exist positive constants C1 and C2, independent of n, such that

C1 log(n) ≤ K(Tn+1, n) ≤ C2 log(n). (20)

This result was then generalized to arbitrary N > n by Rakhmanov and Shekht-
man [9].

Theorem 3.2 (Rakhmanov and Shekhtman, 2006). Let N and n be nonnegative
integers with N > n. Then, there exist positive constants C1 and C2, independent
of N and n, such that

1 + C1 log

(
N

N − n

)
≤ K(TN , n) ≤ 1 + C2 log

(
N

N − n

)
. (21)

5



This result implies in particular that K(TN , n) → 1 as N → ∞, as expected.
Therefore we can approximate ∥·∥ arbitrarily well by sampling on TN for very
large N .

There is a better upper bound when N is much larger than n, due to Sheil-Small
[10].

Theorem 3.3 (Sheil-Small, 2008). Let N and n be nonnegative integers with
N > n. Then,

K(TN , n) ≤
√

N

N − n
. (22)

Furthermore, both the upper bound due to Rakhmanov and Skekhtman and the
upper bound due to Sheil-Small can be improved when N ≥ 2n using a bound
due to Dubinin [4].

Theorem 3.4 (Dubinin, 2011). Let N and n be nonnegative integers with N > n.
Then,

K(TN , n) ≤ sec
( πn
2N

)
. (23)

This upper bound is obtained if N is a multiple of n.

This result was generalized by Kalmykov to when the uniform norm is taken
over an arc of the unit circle instead [6].

For the analogous problem of comparing the uniform and sampling norms when
the polynomials are real, results have been obtained by Coppersmith and Rivlin
[3], Kalmykov [6], and Rakhmanov [8].

4 New Results

The known results in Section 3 are only for the special case when F = TN . In
this section we develop some results for more general F . First, in Section 4.1
we establish some independent results relating K(F, n) and K(TN , n) when F
is “close” to TN . Then, in Section 4.2, we use the results of Section 4.1 and the
existing results from Section 3 to derive some more explicit bounds on K(F, n).

4.1 Independent Results

Fix nonnegative integers N and n, and assume that N > n. The points of
TN are then given by eiϕj , j ∈ {0, . . . , N − 1}, where ϕj = 2πj/N . For each
j ∈ {0, . . . , N − 1}, we perturb the angle ϕj by an angle θj ∈ [−π, π]. We then
have the perturbed sample points

F =
{
ei(ϕj+θj) : j ∈ {0, . . . , N − 1}

}
. (24)

We assume that the perturbations do not cause any of the perturbed points to
align, so that #F = N . Furthermore, any subset F ⊆ T with #F = N can be
obtained in this way for particular choices of the θj ’s.
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We can measure the extent to which F is a perturbation of TN by the quantity

θ = max
0≤j≤N−1

|θj |. (25)

Our main result here is that when θ is sufficiently small (in a way that depends
on N and n) we can bound K(F, n) using K(TN , n).

Theorem 4.1. Suppose that

nθ <
1

K(TN , n)
. (26)

Then, (
1

K(TN , n)
+ nθ

)−1

≤ K(F, n) ≤
(

1

K(TN , n)
− nθ

)−1

. (27)

For the proof, we will need the following lemma.

Lemma 4.1. Suppose that j ∈ {0, . . . , N − 1} and that p ∈ Pn. Then,∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ ≤ nθ∥p∥. (28)

Proof of Lemma 4.1. Let γ be the contour lying on the unit circle from eiϕj to
ei(ϕj+θj), i.e, the arc of the unit circle between the points with the angles ϕj and
ϕj + θj . By Theorem 2.3,∣∣∣p (eiϕj

)
− p

(
ei(ϕj+θj)

)∣∣∣ = ∣∣∣∣∫
γ

p′(z) dz

∣∣∣∣ . (29)

Now, the length of the contour γ is ℓ(γ) = |θj |, and so by Theorem 2.2,∣∣∣∣∫
γ

p′(z) dz

∣∣∣∣ ≤ sup
γ

|p′(z)| · ℓ(γ) ≤ sup
z∈T

|p′(z)| |θj | = ∥p′∥ |θj | ≤ ∥p′∥θ. (30)

Finally, by Theorem 2.1, ∥p′∥ ≤ n∥p∥, and so∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ ≤ ∥p′∥θ ≤ nθ∥p∥. (31)

Proof of Theorem 4.1. We first prove the upper bound. Let p ∈ P∗
n. Then,

∥p∥F = max
0≤j≤N−1

∣∣∣p(ei(ϕj+θj)
)∣∣∣ (32)

≥ max
0≤j≤N−1

(∣∣p (eiϕj
)∣∣− ∣∣∣p (eiϕj

)
− p

(
ei(ϕj+θj)

)∣∣∣) (33)

≥ max
0≤j≤N−1

∣∣p (eiϕj
)∣∣− max

0≤j≤N−1

∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ (34)

= ∥p∥N − max
0≤j≤N−1

∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ . (35)
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By Lemma 4.1, we then have that

∥p∥F ≥ ∥p∥N − nθ∥p∥. (36)

Since
∥p∥
∥p∥N

≤ K(TN , n), (37)

we therefore have that

∥p∥F ≥ ∥p∥
K(TN , n)

− nθ∥p∥ = ∥p∥
(

1

K(TN , n)
− nθ

)
. (38)

By assumption,
1

K(TN , n)
− nθ > 0, (39)

and so we can rearrange to obtain that

∥p∥
∥p∥F

≤
(

1

K(TN , n)
− nθ

)−1

. (40)

Since p was arbitrary,

K(F, n) ≤
(

1

K(TN , n)
− nθ

)−1

. (41)

We now prove the lower bound. Let 0 < ε < K(TN , n). By the definition of
K(TN , n), there exists a p ∈ P∗

n such that

∥p∥
∥p∥N

> K(TN , n)− ε. (42)

Therefore

∥p∥N <
∥p∥

K(TN , n)− ε
. (43)

Next, we have that

∥p∥F = max
0≤j≤N−1

∣∣∣p(ei(ϕj+θj)
)∣∣∣ (44)

≤ max
0≤j≤N−1

(∣∣p (eiϕj
)∣∣+ ∣∣∣p (eiϕj

)
− p

(
ei(ϕj+θj)

)∣∣∣) (45)

≤ max
0≤j≤N−1

∣∣p (eiϕj
)∣∣+ max

0≤j≤N−1

∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ (46)

= ∥p∥N + max
0≤j≤N−1

∣∣∣p (eiϕj
)
− p

(
ei(ϕj+θj)

)∣∣∣ . (47)

By Lemma 4.1, we then have that

∥p∥F ≤ ∥p∥N + nθ∥p∥. (48)
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Therefore

∥p∥F ≤ ∥p∥
K(TN , n)− ε

+ nθ∥p∥ = ∥p∥
(

1

K(TN , n)− ε
+ nθ

)
. (49)

We can then rearrange this to yield that

K(F, n) ≥ ∥p∥
∥p∥F

≥
(

1

K(TN , n)− ε
+ nθ

)−1

. (50)

Since ε was arbitrary,

K(F, n) ≥
(

1

K(TN , n)
+ nθ

)−1

. (51)

Letting θ → 0+, the upper and lower bounds collapse to the equality K(F, n) =
K(TN , n), as expected. Therefore we can make the ratio K(F, n)/K(TN , n) as
close to 1 as we desire by restricting the maximum size of the perturbations.
In particular, small perturbations to the sample points of TN will yield small
deviations in the accuracy of the approximation made by sampling via TN .

The assumed bounds on θ and the derived bounds on K(F, n) in Theorem 4.1
can be determined using knowledge of K(TN , n) and θ. Therefore results about
K(TN , n) can be translated into results about small perturbations of TN which
involve more explicit bounds on θ and K(F, n). We derive some of these results
in Section 4.2 using the results of Section 3.

We can also derive a corollary of Theorem 4.1 that makes the bounds more
straightforward.

Corollary 4.1. Let δ ∈ [0, 1) and suppose that

nθ ≤ δ

K(TN , n)
. (52)

Then,
1

1 + δ
K(TN , n) ≤ K(F, n) ≤ 1

1− δ
K(TN , n). (53)

Proof. Since

nθ ≤ δ

K(TN , n)
<

1

K(TN , n)
, (54)

by Theorem 4.1,

K(F, n) ≤
(

1

K(TN , n)
− nθ

)−1

(55)

≤
(

1

K(TN , n)
− δ

K(TN , n)

)−1

(56)

=
1

1− δ
K(TN , n). (57)
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and

K(F, n) ≥
(

1

K(TN , n)
+ nθ

)−1

(58)

≥
(

1

K(TN , n)
+

δ

K(TN , n)

)−1

(59)

=
1

1 + δ
K(TN , n). (60)

Substituting explicit values for δ, we can find ranges of perturbations of TN for
which we can guarantee that K(F, n) is within a certain proportion of K(TN , n).
Taking δ = 1/4, for example, we get that if

nθ ≤ 1

4K(TN , n)
, (61)

then we have the estimate

4

5
K(TN , n) ≤ K(F, n) ≤ 4

3
K(TN , n). (62)

4.2 Using Known Results

Combining the known results in Section 3 and the results of Section 4.1, we can
derive more explicit results on bounding K(F, n). We keep the notation from
Section 4.1.

First, we can draw the same conclusion of Corollary 4.1 with a stronger but
more simple bound on θ.

Corollary 4.2. Let δ ∈ [0, 1) and suppose that

θ ≤ δ

N3/2
. (63)

Then,
1

1 + δ
K(TN , n) ≤ K(F, n) ≤ 1

1− δ
K(TN , n) (64)

and

K(F, n) ≤ 1

1− δ

√
N

N − n
. (65)

Proof. We have that

nθ ≤ δn

N3/2
≤ δN

N3/2
= δ

√
1

N
≤ δ

√
N − n

N
. (66)
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By Theorem 3.3,

K(TN , n) ≤
√

N

N − n
, (67)

and so

nθ ≤ δ

√
N − n

N
≤ δ

K(TN , n)
. (68)

Thus, by Corollary 4.1,

1

1 + δ
K(TN , n) ≤ K(F, n) ≤ 1

1− δ
K(TN , n). (69)

Furthermore,

K(F, n) ≤ 1

1− δ
K(TN , n) ≤ 1

1− δ

√
N

N − n
. (70)

We can derive the same conclusion with a weaker bound on θ as long as we have
some guarantees on how large N is compared to n. Informally, we can afford
larger perturbations of the sample points if N is sufficiently larger than n.

Corollary 4.3. Let δ ∈ [0, 1) and α ∈ [1,∞) and suppose that N ≥ αn and

θ ≤ δ
√
α− 1

N
. (71)

Then,
1

1 + δ
K(TN , n) ≤ K(F, n) ≤ 1

1− δ
K(TN , n). (72)

Proof. We have that

nθ ≤ δn
√
α− 1

N
=

δ
√
n
√
αn− n√

N
√
N

≤ δ

√
N

N

√
N − n

N
= δ

√
N − n

N
. (73)

By Theorem 3.3,

K(TN , n) ≤
√

N

N − n
, (74)

and so

nθ ≤ δ

√
N − n

N
≤ δ

K(TN , n)
. (75)

Thus, by Corollary 4.1,

1

1 + δ
K(TN , n) ≤ K(F, n) ≤ 1

1− δ
K(TN , n). (76)
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In particular, setting α = 2, the conclusion holds if N ≥ 2n and θ ≤ δ/N .

Similar corollaries can be derived using Theorem 3.2 and Theorem 3.4, where
we can get the same conclusion of Corollary 4.1 with a bound on θ that does
not depend on K(TN , n).

5 Open Problems

There are a number of conjectures around the quantity K(F, n). We discuss a
few of them in Section 5.1 and prove a special case of one of them in Section 5.2.

5.1 Conjecture Statements

The first conjecture is due to Erdős [5].

Conjecture 5.1. Let N and n be nonnegative integers with N > n and F ⊆ T
be such that #F = N . Then, there exists a positive constant C, independent of
N , n, and F , such that

K(F, n) ≥ C log

(
N

N − n

)
. (77)

This lower bound is similar to the bound due to Rakhmanov and Shekhtman
(Theorem 3.2), but with a general F instead of TN . This conjecture would follow
from Theorem 3.2 and the following conjecture, which is stated in [9].

Conjecture 5.2. Let N and n be nonnegative integers with N > n and F ⊆ T
be such that #F = N . Then,

K(F, n) ≥ K(TN , n). (78)

Informally, this conjecture states that TN is the optimal choice of N sampling
points for a fixed N , since we always have that K(TN , n) ≥ 1 and the accuracy
improves the closer K(F, n) is to 1. This conjecture was proven in the special
case of N = n+ 1 by de Boor and Pinkus [2].

5.2 Partial Solutions

Using the results of Section 4, we can prove Conjecture 5.1 in the special case
when F is a sufficiently small perturbation of TN . We use the notation of Section
4 for the following result.

Theorem 5.1. Suppose that either

θ ≤ 1

2N3/2
(79)

or

N ≥ 2n and θ ≤ 1

2N
. (80)
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Then, there exists a positive constant C, independent of N and n, such that

K(F, n) ≥ C log

(
N

N − n

)
. (81)

Proof. If θ ≤ δ/N3/2, then by Corollary 4.2 with δ = 1/2,

K(F, n) ≥ 2

3
K(TN , n). (82)

If N ≥ 2n and θ ≤ 1/(2N), then by Corollary 4.3 with δ = 1/2 and α = 2,

K(F, n) ≥ 2

3
K(TN , n). (83)

Hence, by Theorem 3.2, in both cases we have that

K(F, n) ≥ 2

3

(
1 + C1 log

(
N

N − n

))
≥ 2

3
C1 log

(
N

N − n

)
, (84)

where C1 is a positive constant independent of N and n. Setting C = 2C1/3, C
is a positive constant independent of N and n, and

K(F, n) ≥ C log

(
N

N − n

)
. (85)
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Rendus de l’Académie des Sciences 190 (1930), pp. 338–341.

[2] C. de Boor and A. Pinkus. “Proof of the Conjectures of Bernstein and Erdős
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